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Thermalization in the one-dimensional Salerno model lattice
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The Salerno model constitutes an intriguing interpolation between the integrable Ablowitz-Ladik (AL) model
and the more standard (nonintegrable) discrete nonlinear Schrödinger (DNLS) one. The competition of local
on-site nonlinearity and nonlinear dispersion governs the thermalization of this model. Here, we investigate the
statistical mechanics of the Salerno one-dimensional lattice model in the nonintegrable case and illustrate the
thermalization in the Gibbs regime. As the parameter interpolating between the two limits (from DNLS toward
AL) is varied, the region in the space of initial energy and norm densities leading to thermalization expands. The
thermalization in the non-Gibbs regime heavily depends on the finite system size; we explore this feature via
direct numerical computations for different parametric regimes.

DOI: 10.1103/PhysRevE.103.032211

I. INTRODUCTION

Enlightening of the thermalization properties of lattice dy-
namical models and complex networks is a crucial issue in
understanding and exploiting the transport and localization
phenomena of relevance to a wide range of physical problems.
In spite of substantial research, the coexistence of diverse
physical processes and correlations among them developing
on different space-time scales lacks a conclusive interpretation
[1–11]. It is therefore natural to expect that the application
of statistical and thermodynamical approaches and related
mixing, ergodicity, and energy equipartition concepts to such
problems is a topic of substantial ongoing interest. Among
the numerous prototypical nonlinear physical examples are
the statistics of the Fermi-Pasta-Ulam-Tsingou chains [11,12],
chains of Josephson junctions [13], Gross-Pitaevskii or dis-
crete nonlinear Schrödinger lattices with different types of
nonlinearities [14–20], Toda and Morse lattices [21], etc. The
localized wave patterns that naturally emerge in such systems
as a result of the interplay between lattice dispersion and non-
linearity play a crucial role in the thermalization and lattice
dynamics [22,23].

Our study is partially motivated by recent findings re-
garding the statistics of different discrete nonlinear physical
systems [13,20] in which, as a core mechanism, the relaxation
of nonlinear localized excitations and related ergodization
is considered. In the many-body systems, the ergodization
demands infinite-time averages of an observable during a mi-
crocanonical evolution to match with their proper phase space
averages.

In a class of dynamical systems where ergodization
timescales sensitively depend on the control parameters,

dynamical glass behavior is postulated to be a generic system
property on the route toward the integrable limits [13]. This
glassy behavior is further attributed to the short-range network
in the action space. Hence it is interesting to explore the
thermalization in a system where both an integrable and a
nonintegrable (yet physically relevant) limit can exist as a
suitable parameter is varied. One such model is the Salerno
model (SM) [24]. Despite the two decades that have ensued
since the attempt to thermodynamically describe the discrete
nonlinear Schrödinger (DNLS) model [25,26], the problem
continues to attract significant attention; see Refs. [27–29] for
recent studies. On the other hand, the SM has provided an ex-
cellent platform for exploring the interplay between nonlinear
localized structures and near-linear extended ones, between
nonlinearity and dispersion, on the path between integrability
and nonintegrability; see, e.g., [30] for a recent review.

Bearing the above features in mind, our aim here is to
explore the statistical mechanics and thermalization properties
of the Salerno model. In addition to interpolating between the
fully integrable Ablowitz-Ladik (AL) and the DNLS models
[6,24,31–33], the SM incorporates coexistence and competi-
tion of nonlinear dispersion and nonlinear local interactions.
In the present work, we adopt a grand-canonical description
of SM, decomposing the parameter space of energy and norm
densities (corresponding to the conserved quantities of the
energy and total norm, respectively) into Gibbs and non-Gibbs
regimes. In the former, we expect “regular” thermalization. In
the latter non-Gibbs regime, we expect to encounter energy
localization in the form of long-living nonlinear excitations
in line with the corresponding DNLS prediction of [25]. One
part of the intriguing story is that as the SM parameters
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are varied linearly interpolating between the DNLS and the
AL models, we should be able to observe that regions that
used to belong in the non-Gibbs regime will now “regularly”
thermalize as we approach the AL limit. That is, we should
be able to observe a key change in behavior along the paths
of parametric variation considered. However, there are also
additional features that add to the complexity of the story.

While the general expectation previously was that the non-
Gibbs regime is nonergodic, a recent study of the DNLS
lattice using the statistics of excursion times of equilibrium
Poincaré manifolds and finite-time average distributions of an
observable has shown that a part of the non-Gibbs regime
is weakly ergodic [11,13,20] in the setting of finite lattices.
The nonergodicity may be a feature of the thermodynamic
limit of infinite lattices. Motivated by this array of recent
developments and challenging observations, we numerically
investigate the thermalization in the SM with respect to both
the Gibbs and non-Gibbs regimes. We will utilize a combi-
nation of thermodynamic tools, including the transfer integral
approach, and direct numerical simulations, and measures of
both statistical properties [e.g., the probability distribution
function (PDF) of different amplitudes] and dynamical prop-
erties (such as Lyapunov exponents) in order to characterize
the system, including for different lattice sizes, so as to ad-
dress the fundamental question of the behavior of the SM
under parametric, initial condition and lattice size variations.

Among the motivating factors for considering the present
model, we cite the following. First, the integrable limit of the
SM (i.e., the Ablowitz-Ladik lattice) is well known and in this
integrable limit there exists a systematic procedure to build the
associated conservation laws. As a result, our model provides
a particularly relevant platform for exploring the connection
between statistical mechanics and integrability and conserva-
tion laws. Second, in our study, we will see that it will be
possible to control the nonlinear dispersion parameter. This
will induce a network in the action space that is different from
the case of the standard DNLS model due to the long range of
the network. This long-range network will considerably affect
the lifetime of excitations observed in the system. Finally, the
model enables a monoparametric flexibility that allows con-
trol of the transition between Gibbs and non-Gibbs regimes
for the same point in the thermodynamic (energy-norm) space
under consideration. We find that these intriguing features
of the SM distinguish it from earlier studies and render it a
particularly suitable test bed for further considerations in this
direction.

Our presentation is structured as follows. In Sec. II, we
present the fundamentals of the model. In Sec. III, we lay the
theoretical foundations for the statistical mechanical analysis
of the SM. In Sec. IV, we present the corresponding numerical
analysis (both through statistical and dynamical diagnostics),
and finally in Sec. V we summarize our findings, and present
our conclusions, as well as some directions of future research.
The appendices present details of our theoretical analysis and
results for the model’s Lyapunov exponent.

II. MODEL DESCRIPTION

The SM can be considered as a discretization of the con-
tinuous fully integrable cubic nonlinear Schrödinger equation.

Its equations of motion [24,33], upon suitable rescaling of the
intersite coupling, read

i
dψn

dt
= (ψn+1 − 2ψn + ψn−1)

+(μ|ψn|2)(ψn+1 + ψn−1) + γ |ψn|2ψn, (1)

where ψn is the complex wave function at site n, γ = 2(1 −
μ), and μ � 0. The parameter γ represents the strength of
local nonlinear interaction and μ represents the strength of
nonlinear dispersion (intersite nonlinearity). In the limit μ →
0 the model reduces to the standard DNLS equation with
on-site (local) cubic nonlinearity. On the contrary, the limit
γ = 0 corresponds to the completely integrable AL model
[26,34,35]. A simple transformation ψn → ψnei2t leads to

i
dψn

dt
= (1 + μ|ψn|2)(ψn+1 + ψn−1)+γ |ψn|2ψn. (2)

The full set of invariants of motion in the completely inte-
grable, AL limit is considered in [36], while the nonintegrable
DNLS limit is characterized by two integrals of motion.
Therefore, regardless of the limits, Eq. (2) can be character-
ized by two conserved quantities: norm A and Hamiltonian
H [37]:

A =
N∑

n=1

An, An = 1

μ
ln |1 + μ|ψn|2|,

H =
N∑

n=1

[
− γ

μ
An + ψnψ

∗
n+1 + ψ∗

n ψn+1 + γ

μ
|ψn|2

]
, (3)

where N is the total number of lattice nodes and periodic
boundary conditions are used.

The SM equations [Eqs. (2)] can be derived from the
Hamiltonian H

dψn

dt
= {H, ψn}, (4)

with respect to the canonically conjugated pairs of variables
ψn and iψ∗

n defining the deformed Poisson brackets [38]

{ψn, ψ
∗
m} = i(1 + μ|ψn|2)δnm, {ψn, ψm} = {ψ∗

n , ψ∗
m} = 0.

(5)

III. STATISTICAL MECHANICS OF THE SALERNO
NETWORK

Here we attempt to clarify the thermalization properties of
the SM starting from the DNLS limit μ = 0, in which the
thermalization and statistical properties are extensively inves-
tigated [2,20,25,38,39]. After a brief remark on findings in the
DNLS limit we probe the extension of the Gibbs approach to
the SM with competing local and nonlocal nonlinearities.

Applying the canonical transformation ψn =√
An exp (iφn), where An and φn denote the amplitude

and phase, we obtain from Eq. (3) the following expressions
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for the conserved quantities:

A = 1

μ

N∑
n=1

ln |1 + μAn|,

H =
N∑

n=1

[
− γ

μ2
ln |1 + μ An| + γ

μ
An

+ √
An An+1 cos (φn − φn+1)

]
. (6)

The corresponding grand-canonical partition function of the
SM can then be presented in a form

Z =
∫ ∞

0

∫ 2π

0

N∏
n=1

dφndAne−β(H+αA), (7)

where parameters α and β are introduced in analogy with the
chemical potential and the inverse temperature [25] (i.e., they
are the corresponding Lagrange multipliers). This expression
can be reduced to the integral form after the integration over
the phase variables φn:

Z = (2π )N
∫ ∞

0

N∏
n=1

dAn

× I0(2β
√

AnAn+1) e
−β

∑
n[(− γ

μ2 + α
μ

) ln |1+μ An|+ γ

μ
An]

, (8)

where I0 stands for the modified Bessel function of the first
kind (with index 0).

In the thermodynamic limit of large systems N → ∞, the
integral can be evaluated exactly using the eigenfunctions and
eigenvalues of the transfer integral operator (TIO) (Appendix
A). From the latter calculation, in the infinite-temperature
limit β → 0, the following relation between the energy (h =
H/N) and norm (a = A/N) density can be derived,

h = 2(1 − μ)a2

(1 − aμ)
, (9)

which for μ = 0 reduces to the corresponding relation of the
DNLS lattice [6,20,25]. In terms of the largest eigenvalue
λ0 of the kernel of Eq. (A10), the norm density a can be
expressed as a = ∫ ∞

0 y2
0(A)AdA, where y2

0(A) represents the
probability distribution of amplitudes P(A) corresponding to
the largest eigenvalue.

Following the statistical mechanical analysis of Appendix
A, we distinguish the Gibbs regime in the (a, h) parameter
space by determining the characteristic phase curves β → ∞
and β → 0. While formally the first one separates the mi-
crocanonically inaccessible regime from the Gibbs region of
phase space, the second one separates regions characterized
by positive temperature ( 1

β
> 0) from those with negative

temperature ( 1
β

< 0) whose accessibility is experimentally
and numerically proven and which leads to the prolonged
emergence of coherent structures.

The transition curve β → ∞ can be determined from

h = −γ

μ
a + γ

μ2
(eμa − 1) − 2

μ
(eμa − 1), and

a = 1

μ
ln(1 + μd ), (10)

0 1 2
a

0
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h
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FIG. 1. The norm and energy density parameter space (a, h) of
the SM. The area between the curves β = 0 (black thin lines) and
β → ∞ (red solid thick line) in the parameter space (a, h) denotes
the Gibbs regime of anticipated thermalization [Eq. (7) is valid] for
a few values of the parameter μ (=0, 0.1, 0.2, 0.3, 0.4) respectively
represented by solid, dot-dot-dashed, dashed, dot-dashed, and dotted
black curves. The area above β = 0 will be referred to as non-Gibbs,
where Eq. (7) is invalid. The region below β → ∞ is forbidden
for any microcanonical states. The green, blue, and orange sym-
bols respectively represent (a = 1.5, h = 3), (a = 1.5, h = 5), and
(a = 0.2, h = 0.4).

by minimizing the Hamiltonian Eq. (3) with the plane-wave
solution in a form ψn = √

deinθ and taking θ = π .
To clarify the thermalization properties, we calculate the

amplitude probability density function [P(A)] and the excur-
sion time probability (P+). The P(A) obtained from a direct
numerical simulation of Eq. (1) is compared with the one
calculated via the TIO approach [25]. On the other hand,
the time intervals which the local norms spend between two
consecutive intersections of the plane An = a (the Poincaré
section) form the excursion time distribution P+(τ ), where +
denotes An > a and τn(i) = t i+1

n − t i
n. The distribution has the

average μτ and the standard deviation στ . The value of στ can
be associated with the divergence of the average excursion
time and weak nonergodicity in the lattice [11,20]. A third
measure of thermalization is the finite-time average (FTA) of
the observable,

An,T = 1

T

∫ T

0
An(t )dt . (11)

The distribution of the FTA for a set of trajectories is char-
acterized by the first moment m1(T ) and the second moment
m2(T ). For an ergodic regime, at large time m2(T → ∞) → 0
[13,40].

In order to investigate thermalization in the SM we perform
numerical experiments and base our corresponding analysis
on the system’s phase diagram illustrated in Fig. 1, in the
parameter space (a, h). The red curve corresponds to the zero-
temperature limit β → ∞, while black curves correspond
to the infinite-temperature limit, β → 0 for a few values of
parameter μ in the interval 0 to 0.5. These are based on the
analytical predictions of these limits given above (and derived
in the Appendix A). The region between β = ∞ and β = 0
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lines denotes the Gibbs regime of the SM where the approach
based on the grand-canonical-Gibbs statistics (Eq. (7) is appli-
cable [20,25]) and thus the model is expected to thermalize.
Outside this region, a non-Gibbs regime featuring the pres-
ence of coherent structures is identified where, however, for
finite domains only weak nonergodicity may be present as
discussed in [20]. We now proceed to analyze our numerical
computations at different selected points within this parameter
space bearing in mind that a key feature of the SM case is that
regimes identified as non-Gibbsian for the DNLS model of
μ = 0 can be Gibbsian for larger values of μ.

IV. NUMERICAL ANALYSIS

In this section, we describe the numerically obtained re-
sults for various μ values corresponding to both the Gibbs and
non-Gibbs regimes. This section aims to explore the thermal-
ization properties in these regimes induced by the competing
nonlinearities, local nonlinear interaction, and nonlinear hop-
ping, which cause self-trapping and nonlinear dispersion,
respectively.

We solve Eq. (1) numerically by using an explicit Runge-
Kutta algorithm of order 8, called DOP853 [41–43]. We set
the relative energy error |H(t )−H(0)

H(0) | and norm |A(t )−A(0)
A(0) | error

threshold to 10−4. Initially a small complex random perturba-
tion is added to the plane waves

ψn(0) =
√

d exp (iφn),

where d = μ−1[exp(aμ) − 1] = A/N . Unless otherwise
mentioned we use a total integration time of T = 107 and a
system size of N = 256. As an additional dynamical diagnos-
tic of the degree of chaos in the system, we discuss the use
of the finite-time maximal Lyapunov characteristic exponent
(mLCE) in Appendix B.

A. Gibbs regime

We consider the parameter set (a = 1.5, h = 3) which is
in the Gibbs regime irrespective of the μ value considered
(see Fig. 1). The numerically calculated PDFs, P(A) (solid
curves in Fig. 2), show that the amplitude A increases with
the increase of μ. In order to ensure that the obtained P(A)
represent a thermalized state, we compare them with the
probability distributions obtained by the TIO approach based
on the corresponding dominant (squared) eigenvector of the
TIO approach (see, e.g., Appendix A and also [25]). Our
results indicate that TIO solutions (dashed curves in Fig. 2)
and numerical results match very well, which corroborates the
anticipated thermalization in this regime.

The amplitude profiles corresponding to the case (a =
1.5, h = 3) for three different μ values are shown in
Fig. 3. Though high-amplitude nonlinear localized excitations
emerge in the system as a result of the modulational instability
of the initial condition, they are all rather short lived and the
long-time evolution of the system appears to be thermalized
into a phononic bath and without evidence of any kind of
persistent localization. The thermalization is further verified
from the second moment, m2(T ), of the FTA of local integral
norms (Fig. 4), which decays as 1/T at large times for all
values of the considered μ.

0 10 20 30 40 50 60 70
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10
-1

10
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10
-5

10
-7

10
-9

P
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)

�������
�������
������	
������


FIG. 2. The PDF of local norms (amplitudes) An = |ψn|2 for
different values of μ for the parameter set (a = 1.5, h = 3). Dashed
curves represent the results obtained analytically by the TIO method,
while solid curves show the numerically generated PDFs. The total
integration time is T = 107. TIO curves nicely fit to numerical ones
in the Gibbs regime.

Additionally, the calculation of the mLCE  in
Appendix B shows that  > 0 (red squares in Fig. 10) which
is a signature of chaoticity in the system.

B. Non-Gibbs regime

To investigate the thermalization in the non-Gibbs regime,
we consider the parameter set (a = 1.5, h = 5), the blue col-
ored point in Fig. 1. For this parameter set, the critical value
μc ≈ 0.17 sets the transition point from the Gibbs to the
non-Gibbs regime. That is, for μ > μc, (a = 1.5, h = 5) is
in the Gibbs regime, where TIO solutions match exactly with
the numerically calculated P(A) as shown in Fig. 5.

For μ < μc, the tail of P(A) develops a bump (at suitably
large amplitudes) at initial times, which can be associated
with the accumulation of large-amplitude nonlinear excita-
tions. In spite of it, we observed an exponential cutoff that
might be related to the finite size of the system, which has
been shown to affect all statistical measures we calculated in
the non-Gibbs regime. It is worthwhile to observe that this
bump is no longer present in the cases of μ > μc (while
the cutoff is still featured) and at large times for μ < μc. To
corroborate this observation in the system, but also to explore
the role of the finite-size effects, we first plot the amplitude
profiles as a function of time for three different values of
μ, Fig. 6. Interestingly, for all values of μ, both those that
belong to the Gibbs regime [μ = 0.5 and μ = 0.2 of panels
(c) and (b); the latter is near and above the critical value]
and even in the non-Gibbs regime (μ = 0.05), the decay of
initially generated large-amplitude structures is eventually ob-
served. Nevertheless, the coherent structures are significantly
more prominent in the non-Gibbs case. The latter case of
panel (a) represents the possibility of a non-Gibbsian regime
which, however, within a finite lattice manifests the fea-
tures of quasiergodic behavior as has been discussed in [20].
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FIG. 3. The amplitude profiles in space (n)-time (t) in the Gibbs regime for three different μ values (a) μ = 0.05, (b) μ = 0.2, and
(c) μ = 0.5 at (a = 1.5, h = 3) for the system size N = 256.

The second moment of the FTA of the integral local norms,
shown in Fig. 7, decays over time for the considered μ values.
The curves, however, do not indicate any distinctive behavior
that differentiates the dynamics in Gibbs (μ > μc) and non-
Gibbs regimes (μ < μc).

In line with recent developments in the field [13,20], it
is quite relevant to explore the effects of the finite size of
our computation and their implications in connection with the
infinite domain thermodynamic analysis, e.g., implicit in the
TIO calculations. To explore the role of finite system size, we
calculate the variance, σ 2

τ , of the excursion time distribution
for different system sizes as depicted in Fig. 8. Upon increas-
ing the system size N , the variance σ 2

τ increases indicating the
significance of the finite-size effect in the thermalization of the
non-Gibbs regime for h → hβ=0. The somewhat nonsmooth
nature of the growth might be related to the small number
of initial conditions used for the averaging. Nevertheless, it
can be conjectured that in the limit N → ∞ the excitations in
the non-Gibbs regime will be persistent. It is also worthwhile
to note that in the calculation of the variance, σ 2

τ , the excita-
tions whose lifetime is higher than the total integration time,
T = 107, are not considered. On the other hand, the decay
of the second moment, m2, of the FTA distribution shown in
Fig. 7 indicates that there are no such long-living excitations.
Since we observed that the finite size plays a crucial role in the
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����	
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T
-1

FIG. 4. The evolution of the second moment [m2(T )] of FTA
distributions of the integral local norms for the different values
of μ corresponds to (a = 1.5, h = 3). The dashed line represents
m2 ∝ T −1.

non-Gibbs regime for h → hβ=0, we next consider a point in
the parameter space (a, h), that is far from hβ=0. This higher
ratio of h

hβ=0
can be more straightforwardly obtained for a

small norm and we fix (a = 0.2, h = 0.4) (orange symbol in
Fig. 1). As the ratio h

hβ=0
becomes larger, the contribution of

the nonlinear interaction term in Eq. (3) is higher due to the
boundedness of the kinetic energy [25]. The corresponding
amplitude evolutions are shown in Fig. 9 for three different
values of μ. For all these μ values, the parameter set (a = 0.2,
h = 0.4) is in the non-Gibbs regime and accordingly, the am-
plitude evolution shows the presence of at least one excitation
with lifetime greater than the total computation time. This
hints at a nonergodic behavior for the considered long but
finite time.

In summary, our analysis has illustrated that the Gibbs
regime for the DNLS model remains Gibbsian for the SM

0 50 100 150 200
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10
-1
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10
-5

10
-7

10
-9

P
(A

)

�����
�������
�������
������	
������

������

FIG. 5. The PDF of local norms (amplitudes) An = |ψn|2 for
different values of μ for the parameter set (a = 1.5, h = 5). This
arrangement is in the Gibbs regime for μ > 0.17 and otherwise
in the non-Gibbs regime. Different curves are associated with μ =
0, 0.1, 0.2, 0.3, 0.4, 0.5 as shown in the legend. Dotted orange
curves represent the results obtained analytically by the TIO method,
while dashed and solid lines show the numerically generated P(A) at
two different times T = 105 and T = 107, respectively. TIO curves
fit the numerical ones in the Gibbs regime, except for the large-
amplitude tail region.
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FIG. 6. In panels (a), (b), and (c), the amplitude profiles are respectively shown in the non-Gibbs regime (μ = 0.05), near the critical
point (μ = 0.2), and in the Gibbs regime (μ = 0.5) for a = 1.5, h = 5, and N = 256. In the non-Gibbs phase [panel (a)], the appearance of
localized breathing structures is significantly more prominent than in the Gibbs regime [panel (c)].

of the present considerations in line with the corresponding
analytical results. The situation becomes considerably more
interesting beyond the thermalization limit of β = 0 for the
DNLS; progressively the thermalization region of the (a, h)
space expands upon increase of μ rendering nonthermalized
parameter ranges for smaller μ thermalized as μ grows past
a certain threshold. However, there exist additional features
to consider. On the one hand, the finiteness of the lattice
plays a considerable role as to whether nonergodicity will be
preserved and it is indeed found that finite lattices may lead
to an apparent ergodization. Nevertheless, as the domain size
grows to infinity, so does the lifetime of the high-amplitude,
nonlinear excitations in line with the thermodynamic model
prediction. On the other hand, the thermalization in the non-
Gibbs regime heavily depends on the h

hβ=0
ratio. When the

latter becomes larger, then the system may find itself in a
nonergodic regime even in the case of the finite-lattice (long-
time) computations. These features are qualitatively reported
here and merit additional quantification through extensive and
highly demanding (in their computation time and accuracy)
computations. Nevertheless, we believe that the above results
offer useful insights in this direction. Further, the occurrence
and dynamics of long-lived excitations in the system has
been associated with the thermodynamics of the DNA double
strand and its denaturation; such thermodynamic discussions
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FIG. 7. The second moment [m2(T )] of FTA distributions versus
μ for (a = 1.5, h = 5). The μ < μc (≈0.17) case represents the non-
Gibbs regime.

in a variety of Klein-Gordon models can be found in [44]. The
family of models presented herein corresponds to the envelope
dynamics of such Klein-Gordon settings.

V. CONCLUSIONS AND FUTURE CHALLENGES

The thermalization in the nonintegrable regime of the
Salerno model (SM) has been investigated by using a
combination of analytical and numerical techniques. More
specifically, we have complemented the transfer integral
operator (TIO) analysis by performing relevant long-time
numerical simulations. In the latter, we have used a set of
diagnostics such as the probability distribution of amplitudes
and finite-time averages of local probability density (and its
moments) as well as, e.g., Lyapunov characteristic exponents.
A key feature of the model is the coexistence of local non-
linearity and nonlinear dispersion. The competition between
these two effects sets two limits, a nonintegrable and an in-
tegrable one, in the system, namely the discrete nonlinear
Schrödinger (DNLS) and the Ablowitz-Ladik (AL) models.
One can then monoparametrically interpolate between these
limits. Our study has mainly focused on the nonintegrable
limit, but provides a sense of the qualitative variation of the
thermodynamic properties as the integrable limit is gradually
approached. In the former limit the statistical mechanics of
the system yields a phase diagram in the parameter space of

0 500 1000
N

100

150

200

250

300

350

400

� ��

FIG. 8. The variance σ 2
τ for μ = 0.05 and (a = 1.5, h = 5) as a

function of system size N . This case corresponds to the non-Gibbs
regime. The total integration time T = 107. The results are averaged
over 5 different initial conditions.
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FIG. 9. The amplitude profiles in the non-Gibbs regime for (a) μ = 0.05, (b) μ = 0.2, and (c) μ = 0.5 at a = 0.2, h = 0.4 for N = 256.

energy and norm densities. An infinite-temperature line de-
composes the phase space into Gibbs and non-Gibbs regimes.
The freedom afforded by the Salerno model is that we can
achieve a transition from a non-Gibbs to a Gibbs regime for
the same norm and energy parameters, upon variation of the
strength of the nonlinear dispersive term (μ) interpolating
between the two limits. Our analysis has shown that in the
Gibbs regime, the SM is ergodic, and that as μ is increased
toward the integrable limit, the region of the two-parameter
space that thermalizes progressively expands. Nevertheless,
there are some additional important features. Specifically, in
the non-Gibbs regime, the ergodic properties heavily depend
on the initial conditions and the ratio h/hβ=0. Additionally, the
finite system size plays a crucial role and the TIO predictions
are (expected to be) genuinely valid in the thermodynamic
limit.

We believe that the present work provides insights into
the thermalization of lattice systems and especially as we
start approaching the integrable limit, including the role of
parameters such as the lattice size and how “deep” in the
non-Gibbs regime the initial conditions are. However, our
results also raise a number of significant questions for future
studies. Specifically, it is important to understand to what
degree we can extend the present picture further toward the
integrable limit and what happens in its immediate vicinity.
Here, an important issue that arises is that additional conser-
vation laws come into play [36]; how are these manifested
in thermodynamic considerations? Their role in modifying
(or dynamically constraining) the picture is something that
is especially relevant to understand, in the immediate vicin-
ity of the integrable limit and then further away from it. In
that vein, revisiting also related studies exploring the creation
and disappearance, as well as mobility, of discrete breathers
as they interact with the phonon bath [45] (and how these
mechanisms change while approaching integrability) would
be an interesting direction. Additionally, while we have il-
lustrated the relevance of finite size and of ratios such as
h/hβ=0, obtaining a quantitative characterization of their role
and of, e.g., the scaling dependence on the coherent structure
(average) lifetime on them emerges as an especially relevant
problem. This would greatly help in appreciating the influence
of quasiergodicity ideas such as those put forth in [13,20].
Lastly, all of the above features have been explored in one-
dimensional contexts yet it would be rather natural to extend
considerations to higher-dimensional ones. These topics are
presently under consideration and findings will be presented
in future publications.
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APPENDIX A: THE GRAND-CANONICAL APPROACH
AND THE NONINTEGRABLE SM

1. β → ∞ line

To obtain the β → ∞ line we substitute the plane-wave
like solution ψn = √

deinθ with θ = π into Eq. (3) and obtain

h = − γ

μ2
ln(1 + μd ) + γ

μ
d − 2d = −γ

μ
a + γ

μ2
(eμa − 1)

− 2

μ
(eμa − 1), and

a = 1

μ
ln(1 + μd ). (A1)

2. β = 0 line

The grand-canonical partition function for the Hamiltonian
Eq. (3) can be written in the form

Z =
∫ ∞

0

∫ 2π

0

N∏
n=1

dφndAne−β(H+αA), (A2)

where parameter α plays the role of chemical potential. Here
a and h can be defined as

a = 〈A〉
N

= − 1

βN

∂ ln(Z )

∂α
,

032211-7



THUDIYANGAL MITHUN et al. PHYSICAL REVIEW E 103, 032211 (2021)

and

h = − 1

N

∂ ln(Z )

∂β
− αa.

After integration over the phase variable φm [see Eq. (6)]
the following expression is obtained:

Z = (2π )N
∫ ∞

0

N∏
n=1

dAn

× I0(2β
√

AnAn+1) e
−β

∑
n[(− γ

μ2 + α
μ

) ln |1+μ An|+ γ

μ
An]

. (A3)

From this expression we find in the limit μ = 0 (no non-
local nonlinearity) the whole set of equations derived for the
DNLS model with only local nonlinearity [25,45].

The line β = 0 which separates the Gibbsian from the non-
Gibbsian regime for the Salerno lattice can be obtained in two
ways:

a. Method I: Analytical

In the limit β → 0, I0(2β
√

AmAm+1) ≈ 1. Now we
take βγ = x and βα = y, A = z. Then Eq. (A3) can be
expressed as

Z = (2π )N E (x, y)N , (A4)

where

E (x, y) =
∫ ∞

0
dze

x 1
μ2 (ln |1+μz|−μz)−y 1

μ
ln |1+μz|

. (A5)

Here we take y = βα ≡ δ, a finite quantity. Consequently

a = − ∂ ln E (0, y)

∂y

∣∣∣∣
y=δ

,

h + α a = −γ
∂ ln E (x, δ)

∂x

∣∣∣∣
x=0

− α
∂ ln E (0, y)

∂y

∣∣∣∣
y=δ

. (A6)

We then obtain

a = − 1

E (0, y)

∂E (0, y)

∂y

∣∣∣∣
y=δ

= 1

δ − μ
,

h + αa = −γ
1

E (0, δ)

∂E (x, δ)

∂x

∣∣∣∣
x=0

− α
1

E (0, y)

∂E (0, y)

∂y

∣∣∣∣
y=δ

= γ
1

(δ − 2μ)(δ − μ)
+ αa,

h = γ
a(

1
a − μ

) . (A7)

We rewrite it as

h = γ
a2

(1 − aμ)
. (A8)

b. Method II: Transfer integral operator (TIO) method

We apply the TIO method to Eq. (A3) which we rewrite as

Z = (2π )N
∫ ∞

0

N∏
m=1

dAmI0(2β
√

AmAm+1)

× e
−β

∑
m[ −γ+αμ

2μ2 (ln |1+μ Am|+ln |1+μ Am+1|)+ γ

2μ
(Am+Am+1 )]

. (A9)

0 0.1 0.2 0.3 0.4 0.5
��

1

1.5

2

2.5

3

3.5

4

��

a=1.5, h=3

a=1.5, h=5

FIG. 10. The mLCE () for (a = 1.5, h = 3) (red squares) and
(a = 1.5, h = 5) (black filled circles) as a function of μ for N = 256.
In both cases the value of  increases with μ. See Fig. 11 for the
finite time mLCE λ(t ).

In order to evaluate the integral, we consider the thermody-
namic limit N → ∞ of the system and evaluate using the
integral equation

∫ ∞

0

N∏
m=1

dAmK (Am, Am+1)y(Am) = λy(Am+1), (A10)

where K (x, y) = I0(2β
√

xy)e−β[ −γ+αμ

2μ2 (ln |1+μ x|+ ln |1+μ y|)+ γ

2μ
(x+y)]

is the kernel of the integral operator of Eq. (A10). Here K (x, z)
is symmetric and in the limit z → ∞,

∫∫
K (x, z)dx dz should

converge.
In the TIO, the partition function can be expressed in a

simple form: Z ≈ (2πλ0)N , where the largest eigenvalue (λ0)
of the kernel function is only taken into account. Therefore,

2 3 4 5 6
log

10
t

1

1.5

2

2.5

3

3.5

��(t)

FIG. 11. The finite-time mLCE λ(t ) for different μ values (μ =
0.05, 0.1, 0.2, 0.3, 0.4, 0.5, from bottom to top) and for the pa-
rameters (a = 1.5, h = 3). The value of λ(t ) at t = 106 is shown in
Fig. 10.
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approximately the norm and energy densities are

a = − 1

βλ0

∂λ0

∂α
, and h = − 1

λ0

∂λ0

∂β
− αa. (A11)

APPENDIX B: THE FINITE-TIME mLCE

As an additional diagnostic, we estimate the maximal Lya-
punov characteristic exponent (mLCE)  [46–48], which is in
general a measure of the degree of chaos in the system. More
concretely, we derive the evolution equations for small pertur-
bations χn(0) of the initially injected plane-wave profile ψn(0)
adopting the standard procedure based on the linearization in
the presence of small perturbations and numerically solve the
obtained variational equations

i
dχn

dt
= (1 + μ|ψn|2)(χn+1 + χn−1) + μ(ψn+1 + ψn−1)

× (ψ∗
n χn + ψnχ

∗
n ) + γ (2|ψn|2χn + ψ2

n χ∗
n ). (B1)

The mLCE is then obtained as

 = lim
t→∞ λ(t ) = lim

t→∞
1

t
ln

||χ (t )||
||χ (0)|| , (B2)

with λ(t ) denoting the so-called finite-time mLCE, χ (t ) =
(χ1, χ2, . . . , χN ) being the deviation vector and || · || the usual
Euclidean norm.

Figure 10 shows that the mLCE  > 0 for both the Gibbs
and non-Gibbs regimes, which confirms the chaoticity of the
system. Also, we find that the mLCE grows exponentially as
a function of μ.

Figure 11 shows the finite-time mLCE λ(t ) for different
μ values (μ = 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, from bottom to
top) and for the parameters (a = 1.5, h = 3). It is clear that by
t = 106 (actually even before that time) the finite-time mLCE
has saturated to specific values. These values of λ(t ) at t =
106 are shown in Fig. 10.
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